Gibbs Sampling for LDA and Applications to RAG

Kyle Torres Advisor: Prof. Hardin

March 7, 2025

Document 1

ball score goal brownie ball

Document 2

policy vote pie policy state

Document 3

pizza pie pizza brownie ball

Document 1

ball score goal brownie ball

Sports

Document 2

policy vote pie policy state

Document 3

pizza pie pizza brownie ball

Document 1

ball score goal brownie ball

Document 2

policy vote pie policy state

Document 3

pizza pie pizza brownie ball

Sports

Politics

Document 1

ball score goal brownie ball

Sports

Document 2

policy vote pie policy state

Politics

Document 3

pizza pie pizza brownie ball

Food

Motivating Example (con.)

Document 1

ball score goal brownie ball

Document 2

policy vote pie policy state

Document 3

pizza pie pizza brownie ball

Topic Modeling

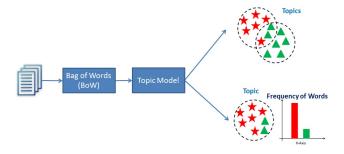
Definition

A method for unsupervised classification of documents that identifies clusters of similar words (topics).

Topic Modeling

Definition

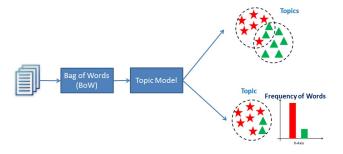
A method for unsupervised classification of documents that identifies clusters of similar words (topics).



Topic Modeling

Definition

A method for unsupervised classification of documents that identifies clusters of similar words (topics).



Applications

Sentiment analysis, recommender systems, information retrieval, etc.

Latent Dirichlet Allocation (LDA)

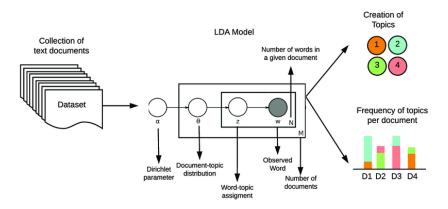
Definition

Latent Dirichlet Allocation (LDA) is a probabilistic model that extracts topics from a corpus of text.

Latent Dirichlet Allocation (LDA)

Definition

Latent Dirichlet Allocation (LDA) is a probabilistic model that extracts topics from a corpus of text.



Prior

The prior $P(\theta)$ is the probability distribution that represents one's beliefs about some parameter θ before some evidence is taken into account.

Prior

The prior $P(\theta)$ is the probability distribution that represents one's beliefs about some parameter θ before some evidence is taken into account.

Likelihood

The likelihood $P(Y\mid\theta)$ measures how well a model explains observed data.

Prior

The prior $P(\theta)$ is the probability distribution that represents one's beliefs about some parameter θ before some evidence is taken into account.

Likelihood

The likelihood $P(Y \mid \theta)$ measures how well a model explains observed data.

Posterior

The posterior $P(\theta \mid Y)$ is the probability distribution that combines information from the prior and the data using Bayes' Theorem.

Prior

The prior $P(\theta)$ is the probability distribution that represents one's beliefs about some parameter θ before some evidence is taken into account.

Likelihood

The likelihood $P(Y \mid \theta)$ measures how well a model explains observed data.

Posterior

The posterior $P(\theta \mid Y)$ is the probability distribution that combines information from the prior and the data using Bayes' Theorem.

LDA Model Assumptions/Generative Process

- 1. Draw a topic distribution for each document:
 - ullet Each document d has a corresponding topic distribution $heta_d$
 - Sample $\theta_d \sim \mathsf{Dirichlet}(\alpha)$

LDA Model Assumptions/Generative Process

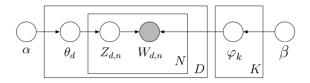
- 1. Draw a topic distribution for each document:
 - ullet Each document d has a corresponding topic distribution $heta_d$
 - Sample $\theta_d \sim \mathsf{Dirichlet}(\alpha)$
- 2. Draw a word distribution for each topic:
 - ullet Each topic k has a word distribution $arphi_k$
 - Sample $\varphi_k \sim \mathsf{Dirichlet}(\beta)$

LDA Model Assumptions/Generative Process

- 1. Draw a topic distribution for each document:
 - ullet Each document d has a corresponding topic distribution $heta_d$
 - Sample $\theta_d \sim \mathsf{Dirichlet}(\alpha)$
- 2. Draw a word distribution for each topic:
 - ullet Each topic k has a word distribution $arphi_k$
 - Sample $\varphi_k \sim \mathsf{Dirichlet}(\beta)$
- 3. Generate words for each document:

For each word position n in document d:

- Sample a topic $z_{d,n} \sim \mathsf{Multinomial}(\theta_d)$
- Sample a word $w_{d,n} \sim \mathsf{Multinomial}(\varphi_k)$



Definition

Definition

Gibbs Sampling is a Markov chain Monte Carlo (MCMC) algorithm that samples from a multivariate probability distribution.

 Usually used when direct sampling from the joint distribution is intractable and sampling from the conditional distribution is more practical

Definition

- Usually used when direct sampling from the joint distribution is intractable and sampling from the conditional distribution is more practical
- Instead of calculating the joint probability of topic assignments $p(z_1,z_2,\cdots,z_n)$, we will be calculating conditionals $p(z_i|z_1,z_2,\cdots,z_n)$, rewritten as $p(z_i|z_{-i})$

Definition

- Usually used when direct sampling from the joint distribution is intractable and sampling from the conditional distribution is more practical
- Instead of calculating the joint probability of topic assignments $p(z_1,z_2,\cdots,z_n)$, we will be calculating conditionals $p(z_i|z_1,z_2,\cdots,z_n)$, rewritten as $p(z_i|z_{-i})$
- By updating variables while keeping others fixed, we create a Markov Chain, and after many iterations, the chain converges to the joint distribution

Definition

- Usually used when direct sampling from the joint distribution is intractable and sampling from the conditional distribution is more practical
- Instead of calculating the joint probability of topic assignments $p(z_1,z_2,\cdots,z_n)$, we will be calculating conditionals $p(z_i|z_1,z_2,\cdots,z_n)$, rewritten as $p(z_i|z_{-i})$
- By updating variables while keeping others fixed, we create a Markov Chain, and after many iterations, the chain converges to the joint distribution
- We assume the Markov Chain is ergodic, meaning that is converges to some stationary distribution regardless of the initial state

Gibbs Sampling Formula

Conditional Probability

$$P(z_{i} = k' \mid Z_{-i}, W) \propto \left[\frac{\alpha + C(d', k')_{-i}}{\sum_{k=1}^{K} (\alpha + C(d', k)_{-i})} \right] \cdot \left[\frac{\beta + C(k', v')_{-i}}{\sum_{v=1}^{V} (\beta + C(k', v)_{-i})} \right]$$

Gibbs Sampling Formula

Conditional Probability

$$P(z_{i} = k' \mid Z_{-i}, W) \propto \left[\frac{\alpha + C(d', k')_{-i}}{\sum_{k=1}^{K} (\alpha + C(d', k)_{-i})} \right] \cdot \left[\frac{\beta + C(k', v')_{-i}}{\sum_{v=1}^{V} (\beta + C(k', v)_{-i})} \right]$$

 $P(z_i=k')$: probability that the topic assigned at the i^{th} token is k' where i corresponds to the topic and word, $\{z_i,w_i=(d',j')\}$

$$P(z_{i} = k' \mid Z_{-i}, W) \propto \left[\frac{\alpha + C(d', k')_{-i}}{\sum_{k=1}^{K} (\alpha + C(d', k)_{-i})} \right] \cdot \left[\frac{\beta + C(k', v')_{-i}}{\sum_{v=1}^{V} (\beta + C(k', v)_{-i})} \right]$$

 $P(z_i = k')$: probability that the topic assigned at the i^{th} token is k' where i corresponds to the topic and word, $\{z_i, w_i = (d', j')\}$

 $C(d',k')_{-i}$: # of words in document d' assigned to topic k', excluding w_i

$$P(z_{i} = k' \mid Z_{-i}, W) \propto \left[\frac{\alpha + C(d', k')_{-i}}{\sum_{k=1}^{K} (\alpha + C(d', k)_{-i})} \right] \cdot \left[\frac{\beta + C(k', v')_{-i}}{\sum_{v=1}^{V} (\beta + C(k', v)_{-i})} \right]$$

 $P(z_i = k')$: probability that the topic assigned at the i^{th} token is k' where i corresponds to the topic and word, $\{z_i, w_i = (d', j')\}$

 $C(d',k')_{-i}$: # of words in document d' assigned to topic k', excluding w_i

 $C(k',v')_{-i}$: # of times word v' has been assigned to topic k', excluding w_i

$$P(z_{i} = k' \mid Z_{-i}, W) \propto \left[\frac{\alpha + C(d', k')_{-i}}{\sum_{k=1}^{K} (\alpha + C(d', k)_{-i})} \right] \cdot \left[\frac{\beta + C(k', v')_{-i}}{\sum_{v=1}^{V} (\beta + C(k', v)_{-i})} \right]$$

 $P(z_i = k')$: probability that the topic assigned at the i^{th} token is k' where i corresponds to the topic and word, $\{z_i, w_i = (d', j')\}$

 $C(d',k')_{-i}$: # of words in document d' assigned to topic k', excluding w_i

 $C(k',v')_{-i}$: # of times word v' has been assigned to topic k', excluding w_i

 α : Dirichlet hyperparameter that defines prior information for document-topic distributions θ_d

$$P(z_{i} = k' \mid Z_{-i}, W) \propto \left[\frac{\alpha + C(d', k')_{-i}}{\sum_{k=1}^{K} (\alpha + C(d', k)_{-i})} \right] \cdot \left[\frac{\beta + C(k', v')_{-i}}{\sum_{v=1}^{V} (\beta + C(k', v)_{-i})} \right]$$

 $P(z_i = k')$: probability that the topic assigned at the i^{th} token is k' where i corresponds to the topic and word, $\{z_i, w_i = (d', j')\}$

 $C(d',k')_{-i}$: # of words in document d' assigned to topic k', excluding w_i

 $C(k',v')_{-i}$: # of times word v' has been assigned to topic k', excluding w_i

lpha: Dirichlet hyperparameter that defines prior information for document-topic distributions $heta_d$

 $\beta \colon$ Dirichlet hyperparameter that defines prior information for topic-word distributions φ_k

$$P(z_{i} = k' \mid Z_{-i}, W) \propto \left[\frac{\alpha + C(d', k')_{-i}}{\sum_{k=1}^{K} (\alpha + C(d', k)_{-i})} \right] \cdot \left[\frac{\beta + C(k', v')_{-i}}{\sum_{v=1}^{V} (\beta + C(k', v)_{-i})} \right]$$

$$P(z_{i} = k' \mid Z_{-i}, W) \propto \left[\frac{\alpha + C(d', k')_{-i}}{\sum_{k=1}^{K} (\alpha + C(d', k)_{-i})} \right] \cdot \left[\frac{\beta + C(k', v')_{-i}}{\sum_{v=1}^{V} (\beta + C(k', v)_{-i})} \right]$$

For each token i:

1. Compute the probability for each topic using the Gibbs Sampling formula

$$P(z_{i} = k' \mid Z_{-i}, W) \propto \left[\frac{\alpha + C(d', k')_{-i}}{\sum_{k=1}^{K} (\alpha + C(d', k)_{-i})} \right] \cdot \left[\frac{\beta + C(k', v')_{-i}}{\sum_{v=1}^{V} (\beta + C(k', v)_{-i})} \right]$$

For each token i:

- 1. Compute the probability for each topic using the Gibbs Sampling formula
- 2. Normalize these probabilities so they sum to 1

$$P(z_{i} = k' \mid Z_{-i}, W) \propto \left[\frac{\alpha + C(d', k')_{-i}}{\sum_{k=1}^{K} (\alpha + C(d', k)_{-i})} \right] \cdot \left[\frac{\beta + C(k', v')_{-i}}{\sum_{v=1}^{V} (\beta + C(k', v)_{-i})} \right]$$

For each token i:

- 1. Compute the probability for each topic using the Gibbs Sampling formula
- 2. Normalize these probabilities so they sum to 1
- 3. Sample a new topic from this multinomial distribution

Gibbs Sampling Process (con.)

Example
$$(i = 47)$$

Suppose we have 3 topics:

1. Compute the probability for each topic using the Gibbs Sampling formula

$$P(z_{47} = k' \mid Z_{-47}, W) \propto \left[\frac{\alpha + C(d', k')_{-47}}{\sum_{k=1}^{K} (\alpha + C(d', k)_{-47})} \right] \cdot \left[\frac{\beta + C(k', v')_{-47}}{\sum_{v=1}^{V} (\beta + C(k', v)_{-47})} \right]$$

Gibbs Sampling Process (con.)

Example
$$(i = 47)$$

Suppose we have 3 topics:

1. Compute the probability for each topic using the Gibbs Sampling formula

$$P(z_{47} = k' \mid Z_{-47}, W) \propto \left[\frac{\alpha + C(d', k')_{-47}}{\sum_{k=1}^{K} (\alpha + C(d', k)_{-47})} \right] \cdot \left[\frac{\beta + C(k', v')_{-47}}{\sum_{v=1}^{V} (\beta + C(k', v)_{-47})} \right]$$

2. Normalize these probabilities so they sum to 1

Topic k	Probability $P(z_{47} = k \mid Z_{-47}, W)$
Topic 1	0.2
Topic 2	0.5
Topic 3	0.3

Gibbs Sampling Process (con.)

Example
$$(i = 47)$$

Suppose we have 3 topics:

1. Compute the probability for each topic using the Gibbs Sampling formula

$$P(z_{47} = k' \mid Z_{-47}, W) \propto \left[\frac{\alpha + C(d', k')_{-47}}{\sum_{k=1}^{K} (\alpha + C(d', k)_{-47})} \right] \cdot \left[\frac{\beta + C(k', v')_{-47}}{\sum_{v=1}^{V} (\beta + C(k', v)_{-47})} \right]$$

2. Normalize these probabilities so they sum to 1

Topic k	Probability $P(z_{47} = k \mid Z_{-47}, W)$
Topic 1	0.2
Topic 2	0.5
Topic 3	0.3

3. Sample a new topic using probabilities from this multinomial distribution (Topic 2 is most likely but isn't always chosen)

Definition

Retrieval Augmented Generation (RAG) is a technique for incorporating information retrieval capabilities for generative artificial intelligence models.

Definition

Retrieval Augmented Generation (RAG) is a technique for incorporating information retrieval capabilities for generative artificial intelligence models.

 sequence-to-sequence model: takes query as input and generates response as output

Definition

Retrieval Augmented Generation (RAG) is a technique for incorporating information retrieval capabilities for generative artificial intelligence models.

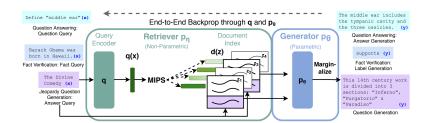
- sequence-to-sequence model: takes query as input and generates response as output
- non-parametric memory (dynamic external database)

Definition

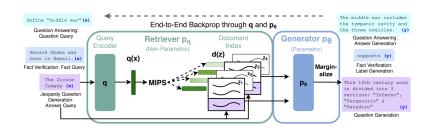
Retrieval Augmented Generation (RAG) is a technique for incorporating information retrieval capabilities for generative artificial intelligence models.

- sequence-to-sequence model: takes query as input and generates response as output
- non-parametric memory (dynamic external database)
- retrieval improves the reliability of responses by decreasing the chances of "hallucinating"

Applying LDA to RAG

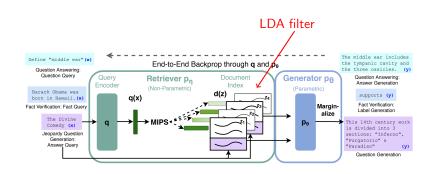


Applying LDA to RAG



• enhanced retrieval: match query with documents that contain the same topic

Applying LDA to RAG



- enhanced retrieval: match query with documents that contain the same topic
- serves as a filtering method in the pre-processing stage that reduces the search space

Future Directions

- Comparing accuracy of outputs from this experiment with results from the original paper
- Quantifying the extent to which this filtering method improves model efficiency

Thank you for listening! Special thanks to Prof Hardin.

